

GEMINI[®] SL[®] Total Knee Replacement

The complete system for greater versatility in total knee arthroplasty

Excellent treatment options for a wide range of patients and indications and maximum intraoperative versatility

- Modular, anatomically designed prosthesis components
- Wide choice of sizes, irrespective of gender or ethnicity
- High survival rate of 98.2%
 in the arthroplasty register of the Emilia Romagna region of Italy¹
- Compatibility with other systems in the LINK[®] SL[®] Knee Family concept provides comprehensive treatment options

with congruent tibial plateau surface

- Congruence of the articular surfaces in extension
- Articulating femoral condyle as flexion increases, giving greater freedom of flexion and relieving strain on the patella
- High congruence stabilizes the joint, also in the absence of the posterior cruciate ligament²

References:

- ¹ Annual Report of R.I.P.O. 2010, Suite 105, Regional Register of Orthopaedic Prosthetic Implantology, http://ripa.cineca.it
- ² Christine S. Heim, BSc, Paul D. Postak, BSc, Nicolas A. Playton, MS, A. Seth Greenwald, DPhil (Oxon): "Classification of Mobile-Bearing Knee Designs: Mobility and Constraint", The JBJS (American) 83:p. 32-37 (2001)

Mobile Bearing

Fixed Bearing

on tibial component

- For use with intact ligaments and capsule and adequate joint stability
- The same femoral component for fixed and mobile bearings
- The same tibial component for fixed bearing and fixed bearing PS

Fixed Bearing PS

with mechanical stop

- Post on the tibia and stabilizing cam on the femoral component as coupling mechanism
- Guided tibial "rollback" with dorsal subluxation stop
- Joint function stabilised in the absence of the posterior cruciate ligament

Fixed Bearing PS

Developed for reconstructing natural kinematics with high flexion and successful long-term function

Adapted patellar articulating groove

for physiologic patella movement with "self-tracking"

Anatomically designed tibial component

for stable positioning with cortical support

Blades, fixation pegs and stem at the tibial component

for protection against rotational and shear forces and also varus/ valgus alternating loads

Cemented or cementless stems

for ensuring stability in poor bone conditions

Elongated patella shield

prevents "snapping" of the patella at patella alta

Polycentric design

with large distal radius and smaller dorsal radius, for enhanced joint stability in extension, excellent mobility and deep flexion

Hypoallergenic implant

LINK PorEx®* Surface Modification made of titanium niobium nitride

- Hypoallergenic
- Substantial reduction in ion release
- Ceramic-like abrasion behavior
- Cementless with TiCaP®** coating

* LINK PorEx®: TiNbN = Titanium Niobium Nitride; hypoallergenic coating (gold color)

** TiCaP[®] double coating: Titan/Calcium Phosphate (CaP)

cementless

cemented

High primary fixation with every type of fixation

CEMENTLESS ANCHORING

TiCaP®* double coating

creates greatly enhanced potential for biological exchange between bone and implant surface³

- Highly porous titanium layer plus
 mechanically stable calcium phosphate
 coating
- Homogeneous surface
 application

References:

- ³ Cunningham B W et al.: "General Principles of Total Disc Replacement Arthroplasty", Spine, Vol 28, No 20 Suppl, 2003
- * TiCaP[®] double coating: Titan/Calcium Phosphate (CaP)

CEMENTED ANCHORING

Macrostructure plus microstructure

at the bone contact surfaces of the femoral and tibial components

- Ideal bone cement-implant interface
- Secure and stable long-term fixation

Germa

SMS** honeycomb-shaped macrostructure

Uniform force transmission in the homogeneous cement mantle

© LINK • 737_GEMINI SL_Flyer_en_2018-03_003

Waldemar Link GmbH & Co. KG Barkhausenweg 10 · 22339 Hamburg, Germany

Phone +49 40 53995-0 • info@linkhh.de www.linkorthopaedics.com

