

BiMobile® — ANATOMIC DESIGN —

BiMobile®

DUAL MOBILITY SYSTEM

- Resilient EndoDur® CoCrMo material provided with proven surface technologies^{2,8,11}
- Safe implantation through optimized instrument design^{3,4}
- 28 mm prosthesis heads starting from 48 mm shell size

- ANATOMIC DESIGN -

- RELIABLE Quality
- SAFE Implantation
- SOLUTION for every patient

Anatomic DESIGN

Designed to minimize the risk of dislocation¹

- Medio-ventral cut-out for higher range of motion and protection of iliopsoas
- Self-centering inserts
- Wide size range (Ø 42 70 mm)

Reliable QUALITY

Quality "Made in Germany"

- Superior wear resistant EndoDur® CoCrMo material^{2,5,6}
- Clinically proven TiCaP[®] double coating for excellent bone integration[®]
- Size-adjusted clearance between metal shell and liner for consistent articulation³

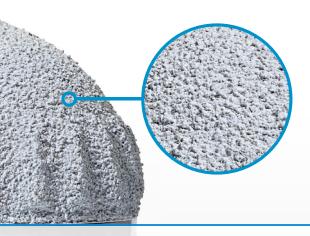
Safe IMPLANTATION

The Instruments ensure safe and reproducible implantation^{3,4}:

Good visualisation of implant rim^{3,4}

 Precise cup alignment due to strong impactor – implant connection^{3,4,7}

 Streamlined and reliable instruments^{3,4,7}


Solution FOR EVERY PATIENT

Suitable for a wide range of indications in combination with our proven LINK Systems

- Versatile possible use in primary, as well as in revision surgery
- For patients with increased risk of dislocation¹
- Cemented and cementless anchorage

TiCaP® double layer coating

- Open cell layer of highly porous titanium with a 15 µm layer of calcium phosphate coating^{9,10}
- Promotes good primary stability and osteointegration⁹

TiCaP® DOUBLE COATING

References (general)

- 1 Stroh, D. Alex, et al. "Dual-mobility bearings: a review of the literature." Expert review of medical devices 9.1 (2012): 23-31.
- 2 Long, M., & Rack, H. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621-1639.
- 3 Internal document W. Link (DOC-08847)
- 4 Internal document W. Link (DOC-07974)
- 5 Internal document W. Link (DOC-08614)
- 6 Internal document W. Link (DOC-08725)
- 7 Internal document W. Link (DOC-08846)
- 8 Ullmark G et al.: "Analysis of bone formation on porous and calcium phosphate-coated acetabular cups: a randomised clinical [18F] fluoride PET study." Hip International 22.2 (2012)
- 9 Cunningham B W et al.: "General Principles of Total Disc Replacement Arthroplasty", Spine, Vol. 28, No. 20 Suppl., 2003.
- 10 Internal document W. Link (MSpec-00008)
- 11 Annual Report 2011; Swedish Hip Arthroplasty Register; www.shpr.se

Waldemar Link GmbH & Co. KG

Barkhausenweg 10 · 22339 Hamburg, Germany Phone +49 (0)40 53995-0 · info@linkhh.de www.linkorthopaedics.com